miércoles, 20 de octubre de 2010

Aurora Boreal

La aurora polar es un fenómeno en forma de brillo o luminiscencia que aparece en el cielo nocturno, usualmente en zonas polares, aunque puede aparecer en otras partes del mundo por cortos periodos de tiempo. Por esta razón algunos científicos la llaman "aurora polar" (o "aurora polaris"). En el hemisferio norte se conoce como "aurora boreal", y en el hemisferio sur como "aurora austral", cuyo nombre proviene de Aurora, la diosa romana del amanecer, y de la palabra griega Boreas, que significa norte, debido a que en Europa comúnmente aparece en el horizonte de un tono rojizo como si el sol emergiera de una dirección inusual.
La aurora boreal es visible de octubre a marzo, aunque en ciertas ocasiones hace su aparición durante el transcurso de otros meses, siempre y cuando la temperatura atmosférica sea lo suficientemente baja. Los mejores meses para verla son enero y febrero, ya que es en estos meses donde las temperaturas son más bajas. Su equivalente en latitud sur, aurora austral, posee propiedades similares.

Origen

Vista de una aurora boreal desde el espacio sobre Canadá.
Una aurora polar se produce cuando una eyección de masa solar choca con los polos norte y sur de la magnetósfera terrestre, produciendo una luz difusa pero predominante proyectada en la ionosfera terrestre.
Ocurre cuando partículas cargadas (protones y electrones) son guiadas por el campo magnético de la Tierra e inciden en la atmósfera cerca de los polos. Cuando esas partículas chocan con los átomos y moléculas de oxígeno y nitrógeno, que constituyen los componentes más abundantes del aire, parte de la energía de la colisión excita esos átomos a niveles de energía tales que cuando se desexcitan devuelven esa energía en forma de luz visible.
El Sol, situado a 150 millones de km de la Tierra, está emitiendo continuamente partículas. Ese flujo de partículas constituye el denominado viento solar. La superficie del Sol o fotosfera se encuentra a unos 6000 °C; sin embargo, cuando se asciende en la atmósfera del Sol hacia capas superiores la temperatura aumenta en vez de disminuir, tal y como la intuición nos sugeriría. La temperatura de la corona solar, la zona más externa que se puede apreciar a simple vista sólo durante los eclipses totales de Sol, alcanza temperaturas de hasta 3 millones de grados. El causante de ese calentamiento es el campo magnético del Sol, que forma estructuras espectaculares como se ve en las imágenes en rayos X. Al ser la presión en la superficie del Sol mayor que en el espacio vacío, las partículas cargadas que se encuentran en la atmósfera del Sol tienden a escapar y son aceleradas y canalizadas por el campo magnético del Sol, alcanzando la órbita de la Tierra y más allá. Existen fenómenos muy energéticos, como las fulguraciones o las eyecciones de masa coronal que incrementan la intensidad del viento solar.
Las partículas del viento solar viajan a velocidades desde 300 a 1000 km/s, de modo que recorren la distancia Sol-Tierra en aproximadamente dos días. En las proximidades de la Tierra, el viento solar es deflectado por el campo magnético de la Tierra o magnetósfera. Las partículas fluyen en la magnetosfera de la misma forma que lo hace un río alrededor de una piedra o de un pilar de un puente. El viento solar también empuja a la magnetosfera y la deforma de modo que en lugar de un haz uniforme de líneas de campo magnético como las que mostraría un imán imaginario colocado en dirección norte-sur en el interior de la Tierra, lo que se tiene es una estructura alargada con forma de cometa con una larga cola en la dirección opuesta al Sol. Las partículas cargadas tienen la propiedad de quedar atrapadas y viajar a lo largo de las líneas de campo magnético, de modo que seguirán la trayectoria que le marquen éstas. Las partículas atrapadas en la magnetosfera colisionan con los átomos y moléculas de la atmósfera de la Tierra, típicamente oxígeno (O), nitrógeno (N) atómicos y nitrógeno molecular (N2) que se encuentran en su nivel más bajo de energía, denominado nivel fundamental. El aporte de energía proporcionado por las partículas perturba a esos átomos y moléculas, llevándolos a estados excitados de energía. Al cabo de un tiempo muy pequeño, del orden de las millonésimas de segundo o incluso menor, los átomos y moléculas vuelven al nivel fundamental, y devuelven la energía en forma de luz. Esa luz es la que vemos desde el suelo y denominamos auroras. Las auroras se mantienen por encima de los 95 km porque a esa altitud la atmósfera, aunque muy tenue, ya es suficientemente densa para que los choques con las partículas cargadas ocurran tan frecuentemente que los átomos y moléculas están prácticamente en reposo. Por otro lado, las auroras no pueden estar más arriba de los 500-1000 km porque a esa altura la atmósfera es demasiado tenue –poco densa- para que las pocas colisiones que ocurren tengan un efecto significativo.
Se le llama aurora boreal cuando se observa este fenómeno en el hemisferio norte y aurora austral cuando es observado en el hemisferio sur. No hay diferencias entre ellas.

Los colores y las formas de las auroras

Aurora Borealis from Expedition 6.ogg
Auroras Boreales desde la Estación Espacial Internacional.
Las auroras tienen formas, estructuras y colores muy diversos que además cambian rápidamente con el tiempo. Durante una noche, la aurora puede comenzar como un arco aislado muy alargado que se va extendiendo en el horizonte, generalmente en dirección este-oeste. Cerca de la medianoche el arco puede comenzar a incrementar su brillo. Comienzan a formarse ondas o rizos a lo largo del arco y también estructuras verticales que se parecen a rayos de luz muy alargados y delgados. De repente la totalidad del cielo puede llenarse de bandas, espirales, y rayos de luz que tiemblan y se mueven rápidamente de horizonte a horizonte. La actividad puede durar desde unos pocos minutos hasta horas. Cuando se aproxima el alba todo el proceso parece calmarse y tan sólo algunas pequeñas zonas del cielo aparecen brillantes hasta que llega la mañana. Aunque lo descrito es una noche típica de auroras, nos podemos encontrar múltiples variaciones sobre el mismo tema.
Los colores que vemos en las auroras dependen de la especie atómica o molecular que las partículas del viento solar excitan y del nivel de energía que esos átomos o moléculas alcanzan.
El oxígeno es responsable de los dos colores primarios de las auroras, el verde/amarillo de una transición de energía a 557.7 nm, mientras que el color más rojo lo produce una transición menos frecuente a 630.0 nm. Para hacernos una idea, nuestro ojo puede apreciar colores desde el violeta, que en el espectro tendría una longitud de onda de unos 390.0 nm hasta el rojo, a unos 750.0 nm. Más adelante en este documento hay un pequeño apartado para aquellos que queráis saber un poco más acerca de estos procesos.
El nitrógeno, al que una colisión le puede arrancar alguno de sus electrones más externos, produce luz azulada, mientras que las moléculas de Helio son muy a menudo responsables de la coloración rojo/púrpura de los bordes más bajos de las auroras y de las partes más externas curvadas.
El proceso es similar al que ocurre en los tubos de neón de los anuncios o en los tubos de televisión. En un tubo de neón, el gas se excita por corrientes eléctricas y al desexcitarse envía la típica luz rosa que todos conocemos. En una pantalla de televisión un haz de electrones controlado por campos eléctricos y magnéticos incide sobre la misma, haciéndola brillar en diferentes colores dependiendo del revestimiento químico de los productos fosforescentes contenidos en el interior de la pantalla.

No hay comentarios:

Publicar un comentario